Learning to Generate Chairs with Generative Adversarial Nets
نویسندگان
چکیده
Generative adversarial networks (GANs) has gained tremendous popularity lately due to an ability to reinforce quality of its predictive model with generated objects and the quality of the generative model with and supervised feedback. GANs allow to synthesize images with a high degree of realism. However, the learning process of such models is a very complicated optimization problem and certain limitation for such models were found. It affects the choice of certain layers and nonlinearities when designing architectures. In particular, it does not allow to train convolutional GAN models with fully-connected hidden layers. In our work, we propose a modification of the previously described set of rules, as well as new approaches to designing architectures that will allow us to train more powerful GAN models. We show the effectiveness of our methods on the problem of synthesizing projections of 3D objects with the possibility of interpolation by class and view point.
منابع مشابه
Conditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...
متن کاملTUCH: Turning Cross-view Hashing into Single-view Hashing via Generative Adversarial Nets
Cross-view retrieval, which focuses on searching images as response to text queries or vice versa, has received increasing attention recently. Crossview hashing is to efficiently solve the cross-view retrieval problem with binary hash codes. Most existing works on cross-view hashing exploit multiview embedding method to tackle this problem, which inevitably causes the information loss in both i...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کامل3D Shape Induction from 2D Views of Multiple Objects
In this paper we investigate the problem of inducing a distribution over three-dimensional structures given twodimensional views of multiple objects taken from unknown viewpoints. Our approach called “projective generative adversarial networks” (PrGANs) trains a deep generative model of 3D shapes whose projections match the distributions of the input 2D views. The addition of a projection modul...
متن کاملGenerating Images Part by Part with Composite Generative Adversarial Networks
Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.10413 شماره
صفحات -
تاریخ انتشار 2017